







# Sex as a Biological Variable in preclinical assays

### Katia ANCELIN & Virginie DANGLES-MARIE

WG CEEA-IC #118





#### Why this presentation?

#### DAP / 3.4.12. Indicate the sex of the animals used and why

We will use only female mice because of less aggressiveness. We don't expect sex differences We will use males and females (without any information about distribution of the 2 sexes)

- Most applications for mouse work are applying for one sex
- When both sexes are included, results are more often analyzed together and not separately
- In general biology and immunology, less that half of publications specified sex (Beery & Zucker 2011)
- This impacts on results: reproducibility issues , increased variability
- And *latent sex effects are lost*

#### Meetings...



COLLOQUE

#### The Genetic and Epigenetic Basis of Sex Bias in Disease

21 avril 2023

Annbe

académigu

2022/2023

Thomas Rome COLLÈGE Administrateur du Collège de France DE FRANCE 11, place Marcelin-Berthelpt, 75005 Parts

www.college.de-france.fr 1530

21 avril 2023 de 9h à 18h Amphitheatre Maurice Halbwachs

#### The Genetic and Epigenetic Basis of Sex Bias in Disease

Edith Heard, Chaire Épigénétique & mémoire cellulaire Scientific co-organisers: James Cleland and Agnese Loda

Daniel Andergassen Technical University of Munich, Germany

**Richard Festenstein** Imperial College, London, UK

Cornelius Gross EMBL-Rome, Italy

Jean-Charles Guéry INSERM, University of Toulouse, France

Jamie Hackett EMBL-Rome, Italy

Irene Miguel-Aliaga Imperial College, London, UK

Jessica Tollkuhn Cold Spring Harbor Lab, New York, USA

Taru Tukiainen FIMM, Helsinki, Finland

Judith Zaugg EMBL Heidelberg, Germany

Colloquium in English, free entry, no registration require



November 17, 2023



Organisateurs Lionel LARUE Michel COHEN-TANNOUDJI Yann HÉRAULT Chantal THIBERT Martin HOLZENBERGER

Comité d'organisation loca Denise AUBERT, Delphine BAETZ, Sylvie DUCREUX, Bérengère FROMY Kiran PADMANABHAN, Bruno PILLOT, Fabienne TATOUT-RAJAS, Marlène WIART Christophe SOULAGE

Information et inscription gratuite mais obligatoire http://clubdesbellessouris.free.fr

Le Club des Belles Souris

#### Laurent LE CAM Intervenants

Magda MAGIERA

Daniel METZGER - IGBMC, Strasbourg Caractérisation des voies de signalisation impliquées dans la progression des cancers de la prostate : analyses *in viv*o et à l'aide d'organoïdes

Alexandra MONTAGNER - I2MC Inserm Toulouse Why sex matters in liver health and disease: a hormonal view

Philippe FAURE - ESPCI, PSL Université, Paris Étude en laboratoire de micro-sociétés de rongeur

Angèle VIOLA - CRMBM, CNRS, Aix-Marseille Université, Marseille Principe des 3R : réduire et raffiner grâce aux méthodes d'IRM in vivo

Maxime SCHLEEF - CarMeN, Université Claude Bernard, Lyon L'échographie de contraste et photo-acoustique rénale 3D permettent une évaluation non-invasive des lésions d'ischémie-reperfusion rénale

Zayna CHAKER - ENS Lyon, France & Biozentrum Bâle, Suisse Coordination spatiale et temporelle des cellules souches neurales adultes : étude longitudinale incluant analyse cellulaire, transcriptomique et comportement durant la grossesse et la gestation

Jérémy H. RAYMOND - Ludwig Institute for Cancer Research, Oxford, UK La perte de la E-cadhérine chez la femme rend les mélanomes sensibles aux estrogènes: usage de l'imagerie intra-vitale pour réduire le nombre d'animaux

Ludovic GOMEZ - CarMeN, Université Claude Bernard, Lyon Recherche translationnelle en cardioprotection : de la prédiction in silico à l'application in vivo

Sophie LAFFONT-PRADINES - Infinity, Université Paul Sabatier, Toulouse De l'importance de prendre en compte le sexe des animaux en immunologie

Amandine GAUTIER-STEIN - NUDICE, Université Claude Bernard, Lyon Les multiples fonctions de la production de glucose : apports des modèles murins tissu-spécifique

Lida KATSIMPARDI - Institut Necker Enfants Malades, Paris Étude du vieillissement cérébrovasculaire avec l'utilisation des organes-sur-puces pour réduire l'utilisation de souris

Minchul KIM - IGBMC, Strasbourg Deep dive into myonuclear heterogeneity and muscle domains with reduction and refinement of animal experiments







Keynotes Edith Heard - EMBL, Heidelberg, DE Muriel Darmon - CNRS. Paris, FR

Sex and Cancer Molly Ingersoll - Institut Cochin, Paris, FR Pierre Val - iGReD, Clermont Ferrand, FR

Sex and Immunology Hanna Lotter - Bernhard Nocht Institute for Tropical Medicine, Hamburg, DE Jean-Charles Guery - INFINITY,

Marcus Altfeld - Leibniz Institute of

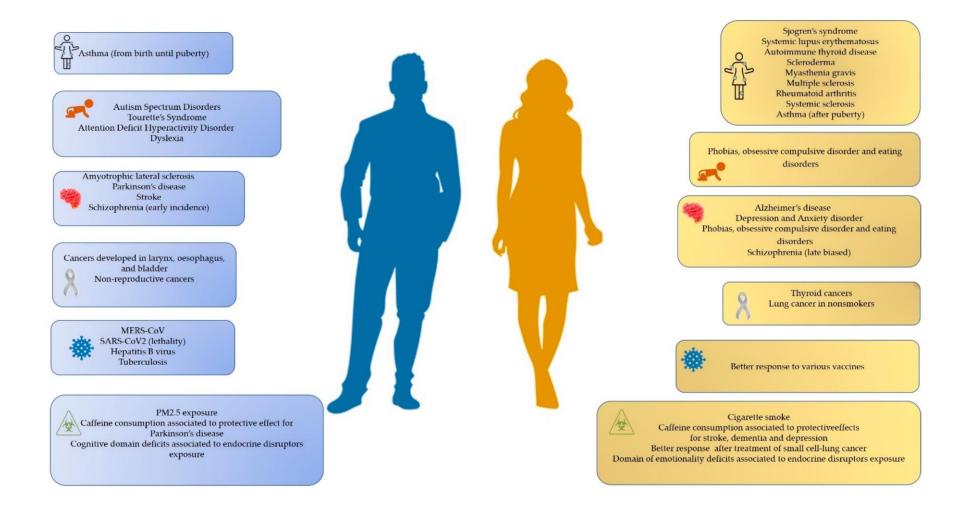
Sex and Metabolism Sara Della Torre - University of Milan, IT Herve Guillou - Toxalim, Toulouse, FR Franck Mauvais Jarvis - University of

Contact

Information and registration ww.institutcochin.fr/en/animation

Amphi Luton, Faculté de Médecine Cochin 24 rue du Fg St-Jacques, 75014 Paris

Sviesan


Toulouse, FR

Inserm

Virology, Hamburg, DE

Tulane, New-Orleans, US

#### Sex specific differences in disease susceptibility



From Migliore et al Biomedicines 2021

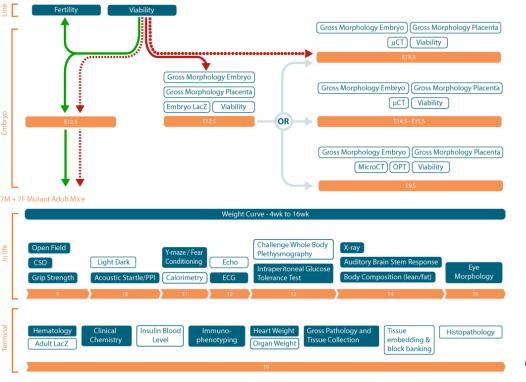
### Sex As a Biological Variable in animal research

ARTICLE

COMMUNICATIONS

Received 27 Oct 2016 | Accepted 30 Mar 2017 | Published 26 Jun 2017

Prevalence of sexual dimorphism in mammalian phenotypic traits


DOI: 10.1038/ncomms15475

OPEN

Data produced by the International Mouse Phenotyping Consortium

- 14,250 wildtype animals + 40,192 mutant mice
- From 2,186 single gene knockout lines
- 7 males and 7 females from each mutant line
- 10 phenotyping centers





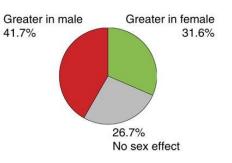
#### Nat Commun. 2017 Jun 26;8:15475

### Sex As a Biological Variable in animal research

#### ARTICLE

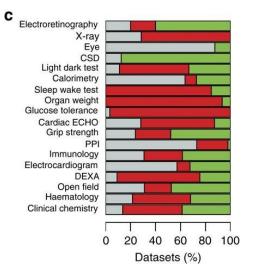
COMMUNICATIONS

Received 27 Oct 2016 | Accepted 30 Mar 2017 | Published 26 Jun 2017

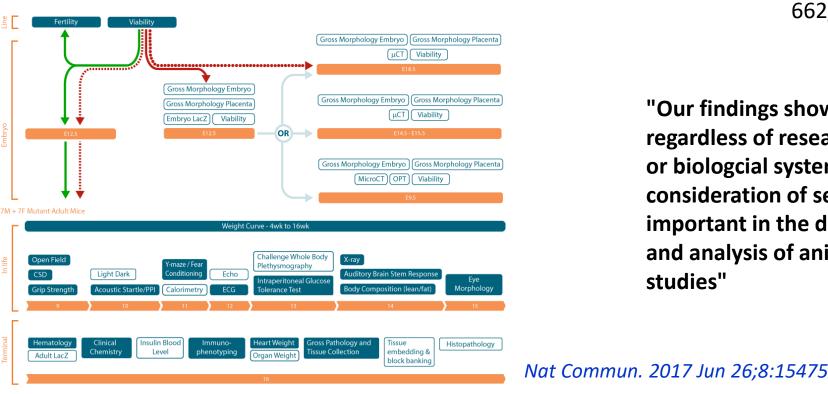

Prevalence of sexual dimorphism in mammalian phenotypic traits

#### Data produced by the International Mouse Phenotyping Consortium

- 14,250 wildtype animals + 40,192 mutant mice
- From 2,186 single gene knockout lines
- 7 males and 7 females from each mutant line
- 10 phenotyping centers

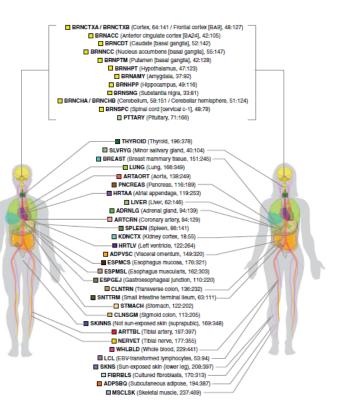

**OPEN** 

DOI: 10.1038/ncomms15475



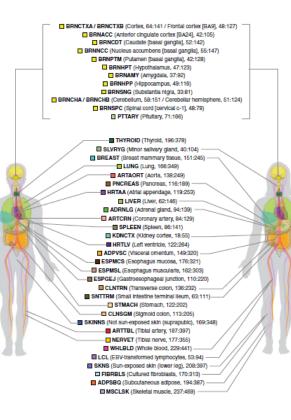

# 662/903 data sets

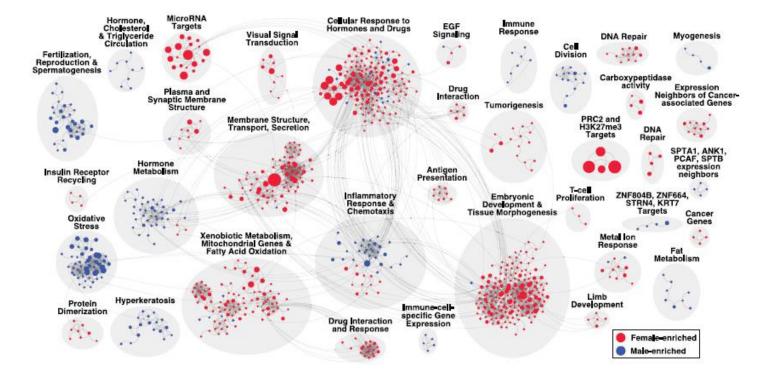
"Our findings show that regardless of research field or biologcial system, consideration of sex is important in the design and analysis of animal studies"




#### IMPReSS pipeline www.mousephenotype.org/impress/index

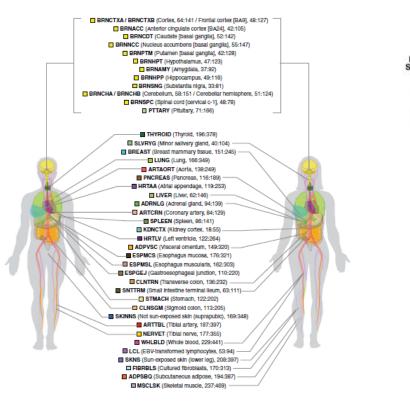


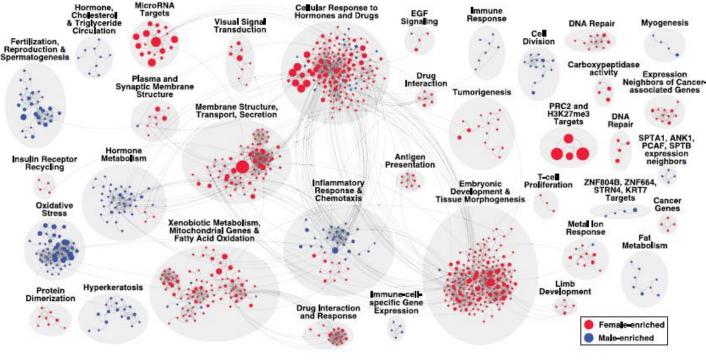

#### **Oliva et al.** *Science* 2020 The impact of sex on gene expression across human tissues


44 tissues GTEX project v8 release ; 838 individuals (557 males, 281 females)



#### **Oliva et al.** *Science* 2020 The impact of sex on gene expression across human tissues

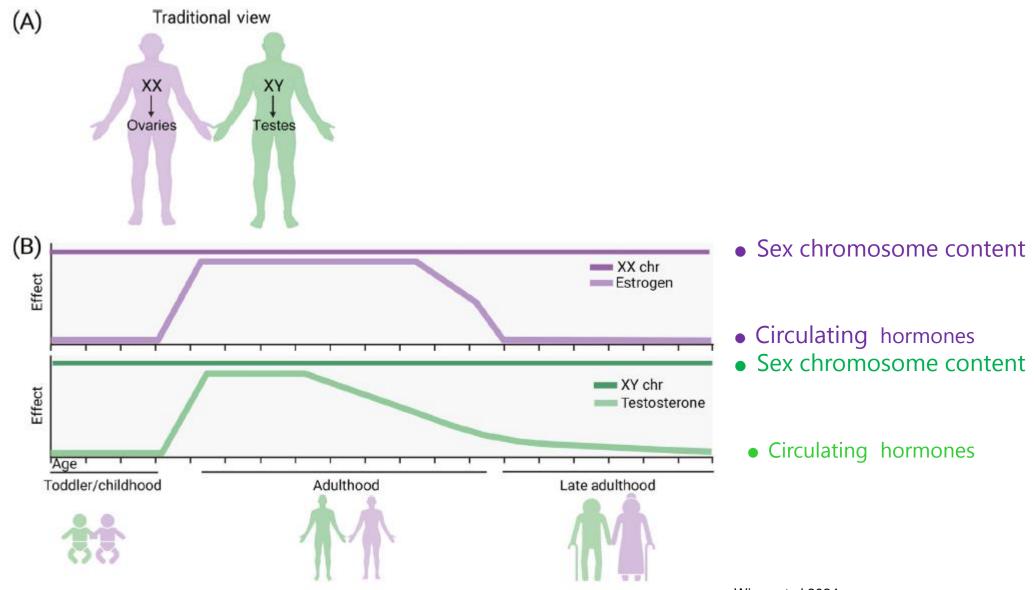

44 tissues GTEX project v8 release ; 838 individuals (557 males, 281 females)






#### **Oliva et al. Science 2020** The impact of sex on gene expression across human tissues

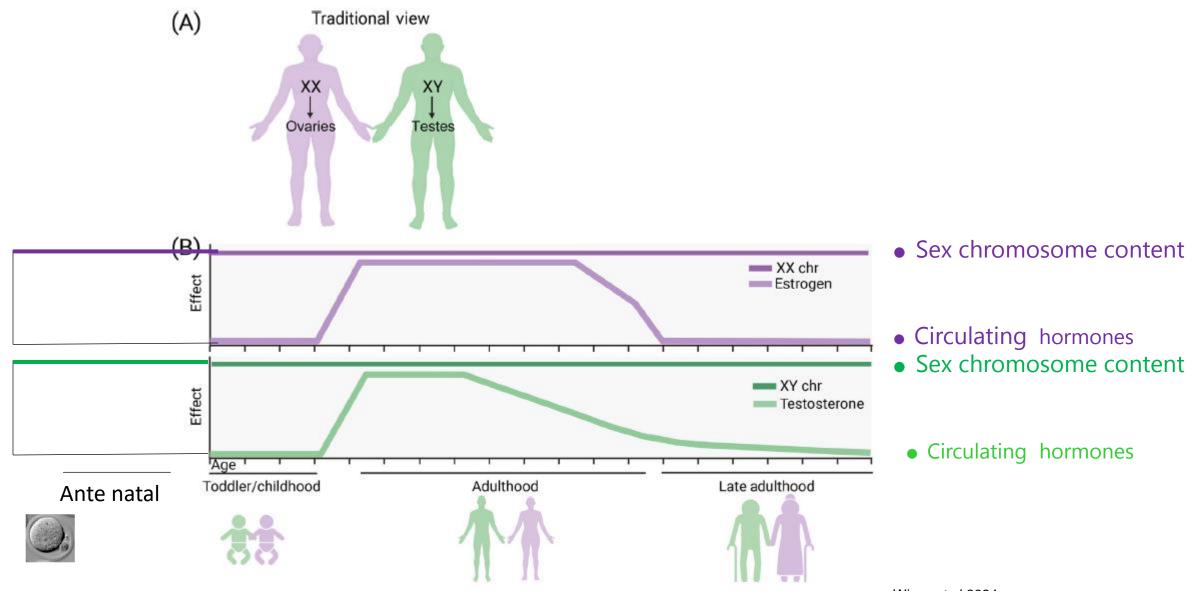
44 tissues GTEX project v8 release ; 838 individuals (557 males, 281 females)






**37,5%** (13 294/35 431 genes; protein coding, IncRNA, & transcribed but less characterized genes) of the human transcriptome was differently expressed in at least one tissue.

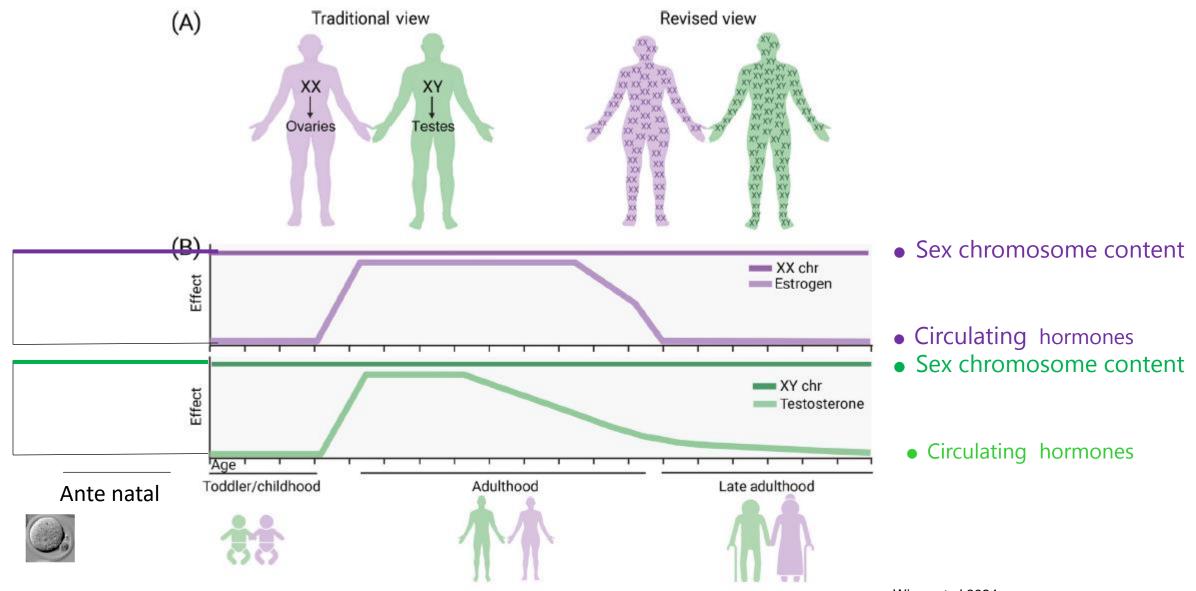
531 are X linked & 12763 are autosomal (47% and 37% of all tested genes respectively)


#### Sex differences in phenotype



Trends in Endocrinology & Metabolism

Wiese et al 2024


#### Sex differences in phenotype



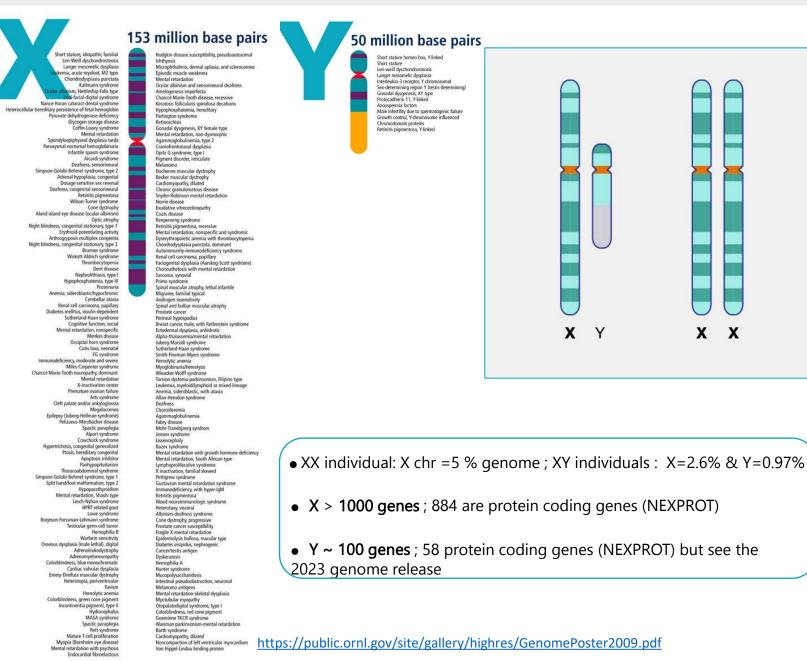
Trends in Endocrinology & Metabolism

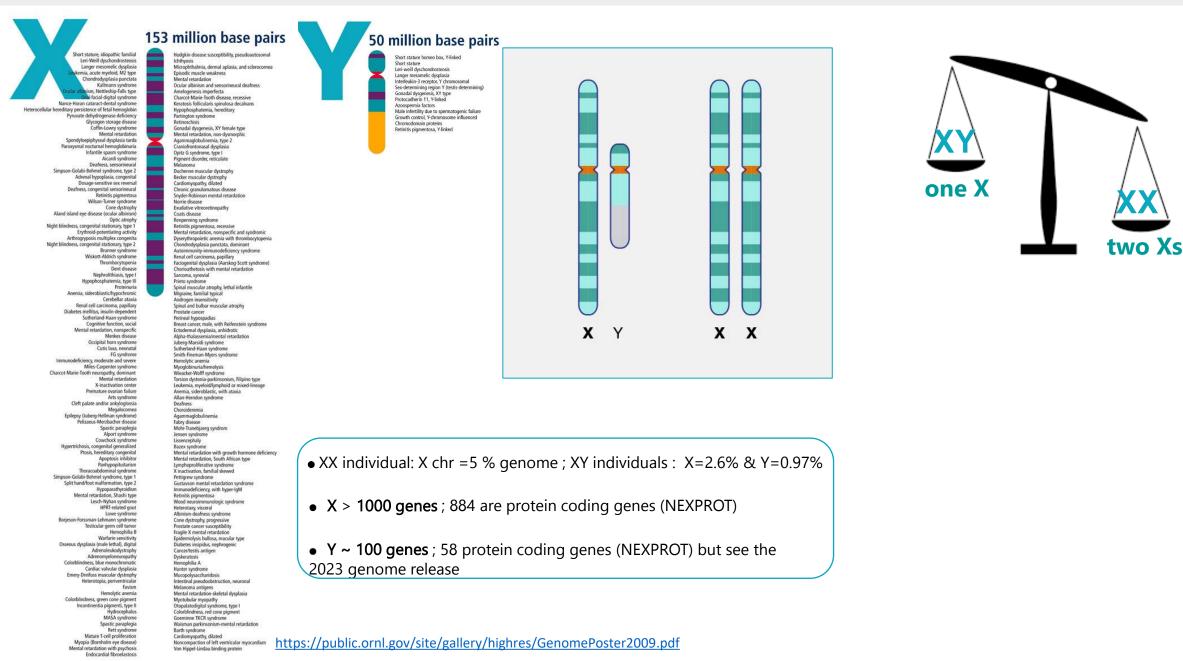
Wiese et al 2024

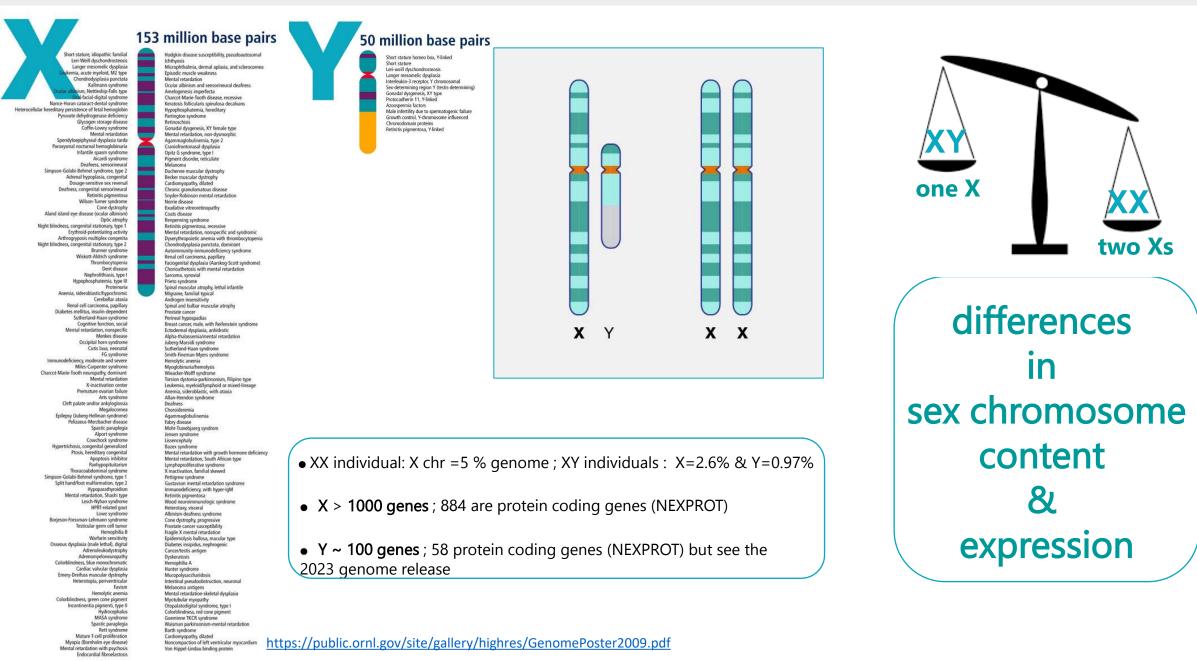
#### Sex differences in phenotype



Trends in Endocrinology & Metabolism


Wiese et al 2024

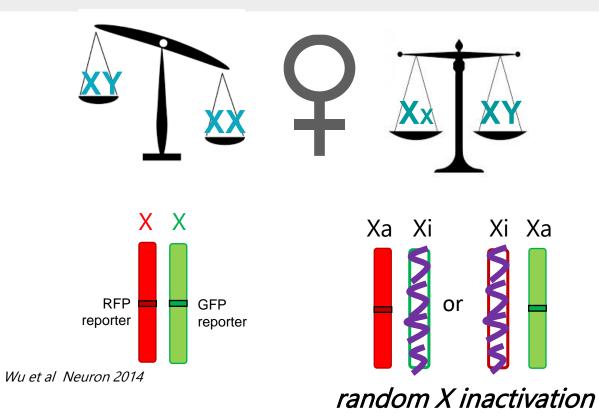

#### Sex As a Biological Variable in animal research


- Evidences of sex impacting biology: an overview about sex chromosomes
- Specific illustrations in cancer and immunology
- Tools: How to apply Sex As a Biological Variable?

• **Perspectives:** further complement on other topics and species

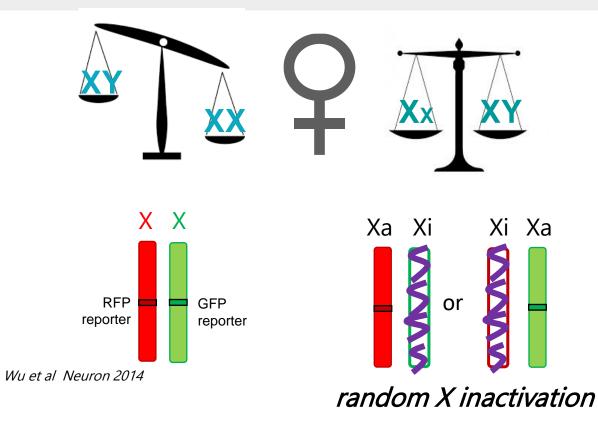
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 153 million base pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rs 50 million base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Short stature, idiopatric familia<br>la veir Weil dysknortostosis<br>la nejer mesomelic dysplasis<br>la veirenia, acute myskoli A2 type<br>Dondodysplasia punctata<br>in veirenia, acute myskoli A2 type<br>Dondodysplasia punctata<br>in facial digital syndrome<br>weither facial digital syndrome<br>Provent delystogenesis deliciency<br>provest del deliciency<br>provest deliciency<br>p | Hodgin disease susceptibility, pseudoutosonal<br>ityryosis<br>Microphtalmia, demal aplasia, and sciencomea<br>Episofic muscle weakness<br>Metal retardiation<br>Costa alteriation<br>Costa alter | Abs data later later<br>later later<br>later later<br>later later<br>later later later later later later<br>later later later later later later<br>later later later later later later later later<br>later later later later later later later later later<br>later later l | xx |
| K kiactivation cetter<br>Premature ovarian failure<br>Arts syndrome<br>Cleft palte and/or antysfogiosia<br>Megalacomes<br>Epilepy (Juberg Helinaus yndrome)<br>Retizaes Merzbacher disease<br>Solowie (Solowie Solowie Solowie<br>Preize Solowie Solowie Solowie<br>Retizaes Solowie Solowie Solowie<br>Prosis, hereditary congenital<br>Apoptosis inhibitor<br>Prosis, hereditary congenital<br>Apoptosis inhibitor<br>Prosis, hereditary congenital<br>Apoptosis inhibitor<br>Prosis, hereditary congenital<br>Apoptosis inhibitor<br>Prosis, hereditary congenital<br>Apoptosis Joanni yne<br>Spith Aafofor malformati<br>Menal retraditoris, Salah injee<br>Leiter (Solowie Solowie Solowie<br>Kerne Borjeson-Forsman-Lehman syndrome<br>Borjeson-Forsman-Lehman syndrome<br>Borjeson-Forsman-Lehman syndrome<br>Borjeson-Gossman-Lehman syndrome<br>Borjeson-Gossman-Lehman syndrome<br>Borjeson-Gossman-Lehman syndrome<br>Borjeson-Gossman-Lehman syndrome<br>Borjeson-Gossman-Lehman syndrome<br>Borjeson-Costania Costania<br>Colobilindenes, Sule menochonate<br>Colobilindenes, Sule                                                        | Leukemia, myedioli/myboid or mixed-lineage<br>Anemia, sideroblatti, with ataxia<br>Allan-Hendon syndrome<br>Dealhers<br>Chorciciderenia<br>Agammaglobulinemia<br>Fabry disease<br>Moto Tandykeng syndrom<br>tissencephaly<br>Bases syndrome<br>Alland Fabry and Alland Statistics<br>Metal retardiation with growth homone deficiency<br>Metal retardiation with spen-typh<br>Pattigrew syndrome<br>Giustavon metal retardiation syndrome<br>Immunodeficiency, with hyper-typh<br>Retenting syndrome<br>Giustavon metal retardiation syndrome<br>Hettereasy, visceral<br>Albinion-dankers, syndrome<br>Epidemotypis buildos, muchar type<br>Diabetes insplate, negative<br>Prostate cancer suscephility<br>Fragile X mental retardiation<br>Dyskeratosis<br>Hemophilia A<br>Hanter syndrome<br>Metal retardiation Schedid syndrome<br>Hettereasy discone<br>Cancerbists antigen<br>Metal retardiation<br>Hetteress, stringen<br>Dyskeratosis<br>Hemophilia A<br>Hanter syndrome<br>Metal retardiation functione<br>Calcolinging Syndrome, type I<br>Colchindhess: red cone pigment<br>Goamine TKCR syndrome<br>Bash String, Glated<br>Hincorage.time al Het ventricolar myocardium<br>Von figget Lindou binding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | https://public.ornl.gov/site/gallery/highres/GenomePoster2009.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |





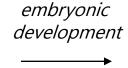


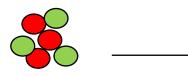

### Sex dosage compensation: X chromosome inactivation in female mammals



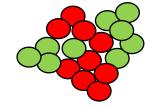

### Sex dosage compensation: X chromosome inactivation in female mammals




Part I


### Sex dosage compensation: X chromosome inactivation in female mammals



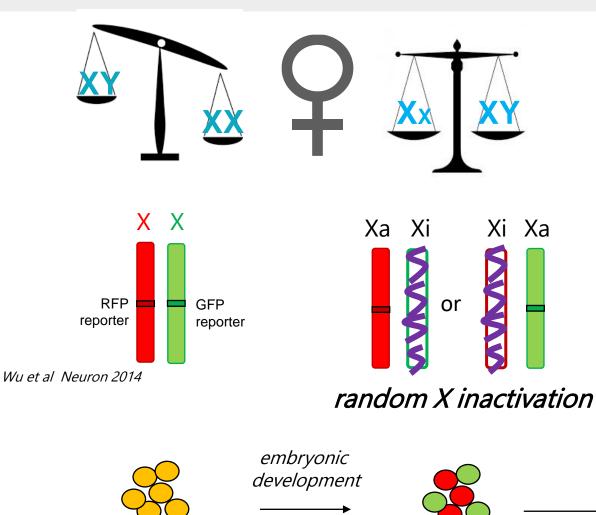



Part I



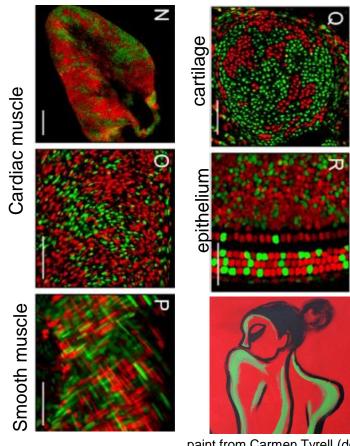


1- choice




2- clonal propagation

### Sex dosage compensation: X chromosome inactivation in female mammals

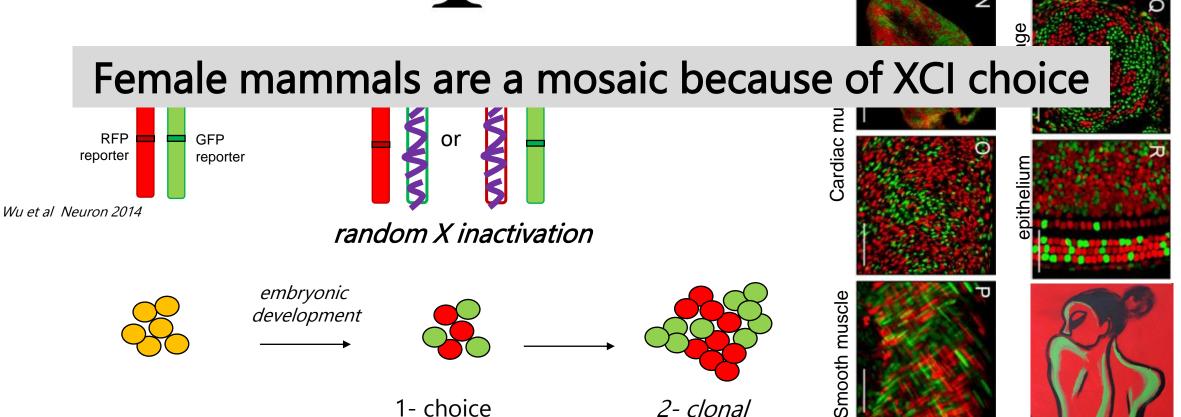

2- clonal

propagation



1- choice

Murine Tissues from Wu et al Neuron 2014

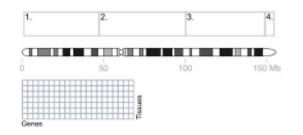



paint from Carmen Tyrell (detail)

### Sex dosage compensation: X chromosome inactivation in female mammals

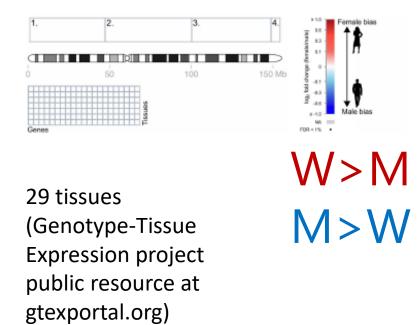


Murine Tissues from Wu et al Neuron 2014



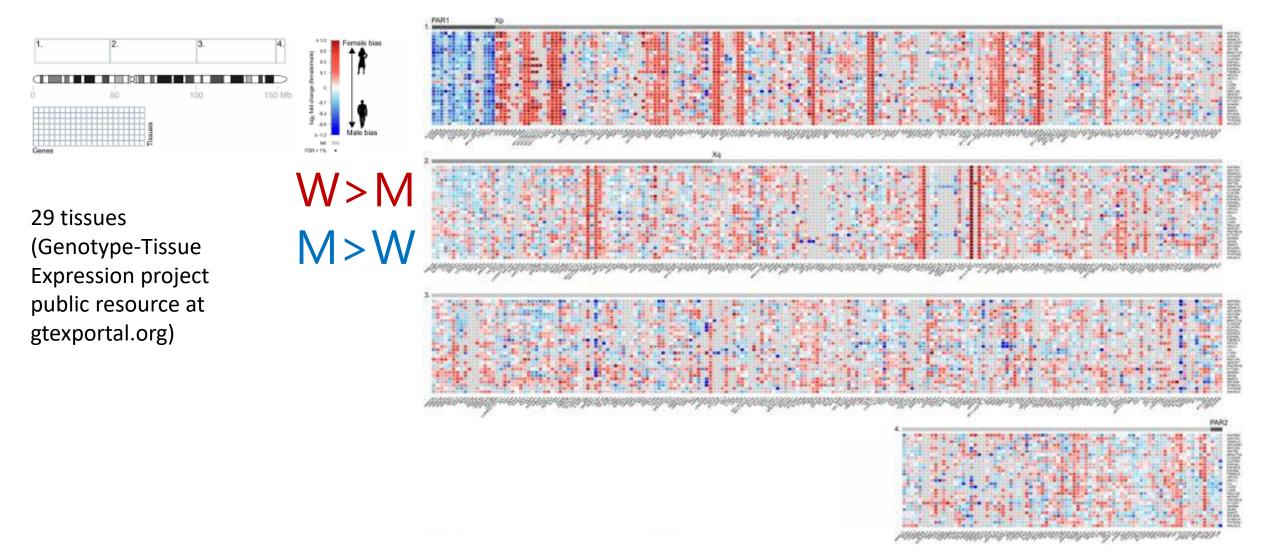

propagation

paint from Carmen Tyrell (detail)


# Part I Variability of X linked gene expression across tissues

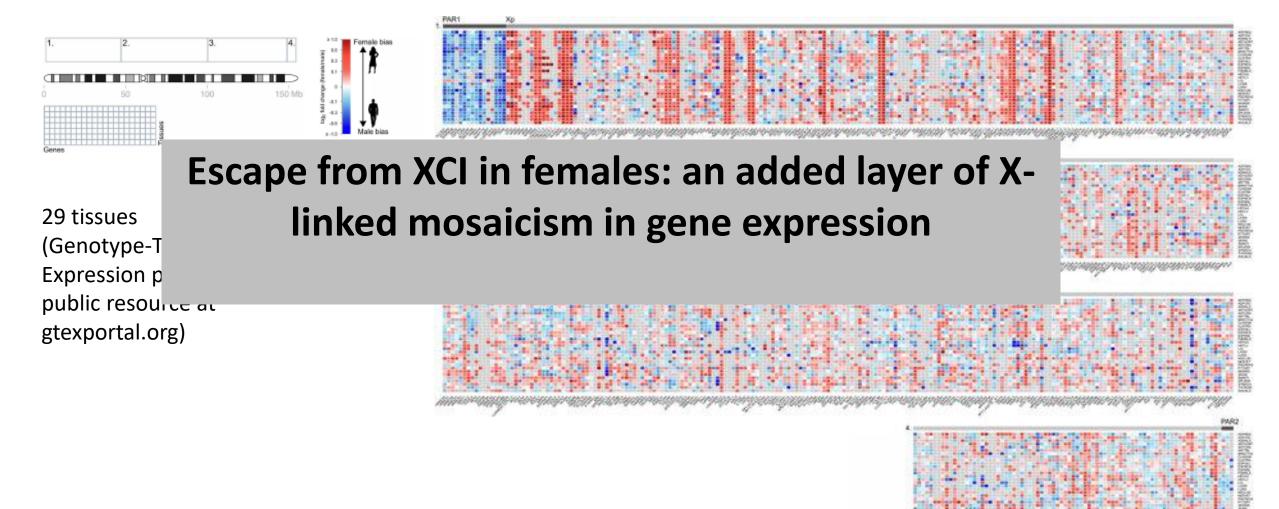
Landscape of X chromosome inactivation across human tissues *Tukiainen et al Nature 2017* 




# Part | Variability of X linked gene expression across tissues

Landscape of X chromosome inactivation across human tissues *Tukiainen et al Nature 2017* 




# Part I Variability of X linked gene expression across tissues

#### Landscape of X chromosome inactivation across human tissues *Tukiainen et al Nature 2017*



# Part I Variability of X linked gene expression across tissues

# Ladscape of X chromosome inactivation across human tissues *Tukiainen et al Nature 2017*



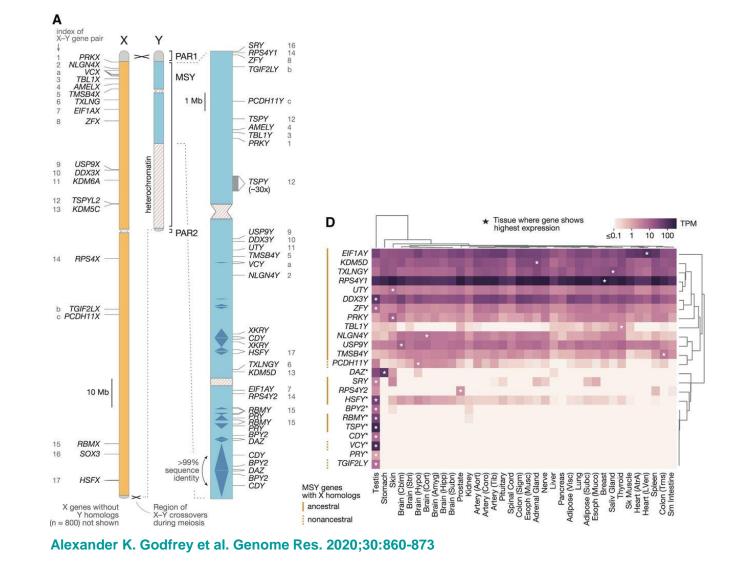
# Part | Variability of Y linked gene expression across tissues

index of X–Y gene pair Y Х PRKX NLGN4X VCX TBL1X AMELX TMSB4X ] PAR1  $\sim$ MSY 1 MI TXLNG EIF1AX ZFX 8 atin 9 USP9X 10 DDX3X 11 KDM6A 12 TSPYL2 13 KDM5C let PAR2 14 RPS4X b TGIF2LX c PCDH11X 10 Mb RBMX 15 SOX3 16 >99% sequence 17 HSFX identity X genes without Region of Y homologs X-Y crossovers (n ≈ 800) not shown during meiosis

Α

Alexander K. Godfrey et al. Genome Res. 2020;30:860-873




### Variability of Y linked gene expression across tissues

Α index of X–Y gene pair Х Y SRY RPS4Y1 ZFY 16 14 ] PAR1  $\sim$ PRKX 8 NLGN4X VCX TBL1X AMELX TMSB4X TGIF2LY b MSY 1 Mb PCDH11Y c TXLNG EIF1AX 7 TSPY 12 ZFX 8 AMELY 4 TBL1Y 3 PRKY atin 9 USP9X 10 DDX3X 11 KDM6A TSPY (~30x) 12 12 TSPYL2 13 KDM5C het .44 USP9Y DDX3Y UTY TMSB4Y <sup>3</sup> PAR2 10 11 5 14 RPS4X VCY a NLGN4Y 2 b TGIF2LX c PCDH11X XKRY CDY XKRY HSFY 17 TXLNGY KDM5D 6 13 EIF1AY RPS4Y2 10 Mb 14 RBMY PRY RBMY PRY BPY2 DAZ 15 15 RBMX 15 16 SOX3 CDY BPY2 DAZ BPY2 >99% sequence identity 17 HSFX CDY × X genes without Region of Y homologs X-Y crossovers (n ≈ 800) not shown during meiosis

Alexander K. Godfrey et al. Genome Res. 2020;30:860-873



### Part | Variability of Y linked gene expression across tissues





### Part | Sex differences in phenotype: sex chromosome content





#### -> « epigenetic effect » of the sex chromosomes

- the inactive X as a « sink » for chromatin factors

- factors that can influence the dosage of autosomal genes

-> differences in dosage

- XCI escapees
 - parental imprints
 maternal X ≠ paternal X

Y genes with no X homologtransregulation between Xs

#### Part I Sex differences in phenotype: sex chromosome content



#### -> « epigenetic effect » of the sex chromosomes

- the inactive X as a « sink » for chromatin factors

- factors that can influence the dosage of autosomal genes

Article

https://doi.org/10.1038/s41590-023-01463-8

#### The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences

Received: 27 April 2022 Accepted: 14 February 2023 Published online: 36 March 2023

Mandy I. Cheng @<sup>12</sup>, Joey H. Li<sup>12</sup>, Luke Riggan<sup>123</sup>, Bryan Chen O<sup>1</sup>, Rana Yakhshi Tafti<sup>1,2</sup>, Scott Chin<sup>1</sup>, Feiyang Ma<sup>0,1,4</sup>, Matteo Pellegrini<sup>1,4</sup>, Haley Hmcir<sup>5</sup>, Arthur P. Arnold<sup>5</sup>, Timothy E. O'Sullivan @<sup>12</sup> & Maureen A. Su@126

Nature Immuno 2023 UTX (X linked) / no role for UTY (Y linked)

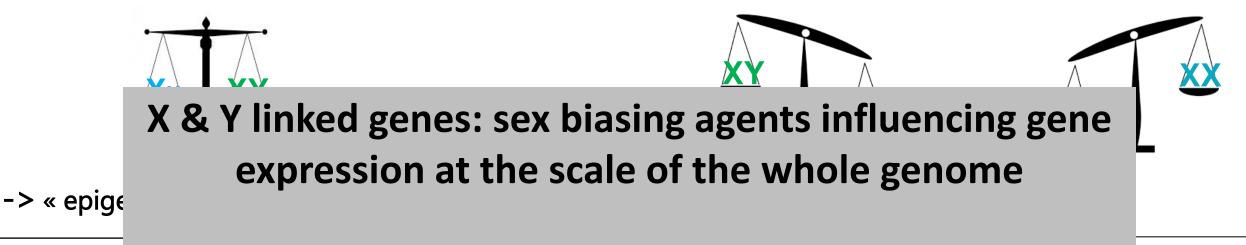


#### -> differences in dosage

- XCI escapees

- parental imprints maternal X  $\neq$  paternal X - Y genes with no X homolog - transregulation between Xs

#### Article


#### Histone demethylase KDM5D upregulation drives sex differences in colon cancer

| https://doi.org/10.1038/s41586- | 023-06254 |
|---------------------------------|-----------|
| Received: 18 October 2021       |           |
| Accepted: 24 May 2023           |           |
| Published online: 21 June 2023  |           |

Jiexi Li<sup>1</sup>, Zhengdao Lan<sup>1</sup>, Wenting Liao<sup>1,2</sup>, James W. Horner<sup>3</sup>, Xueping Xu<sup>3</sup>, Jielin Liu<sup>4</sup>, Yohei Yoshihama<sup>1</sup>, Shan Jiang<sup>3</sup>, Hong Seok Shim<sup>1</sup>, Max Slotnik<sup>1</sup>, Kyle A. LaBella<sup>1</sup>, Chang-Jiun Wu<sup>5</sup>, Kenneth Dunner Jr.<sup>1</sup>, Wen-Hao Hsu<sup>1</sup>, Rumi Lee<sup>1</sup>, Isha Khanduri<sup>6</sup>, Christopher Terranova<sup>5</sup>, Kadir Akdemir<sup>5,7</sup>, Deepavali Chakravarti<sup>1</sup>, Xiaoying Shang<sup>1</sup>, Denise J. Spring<sup>1</sup>, Y. Alan Wang<sup>1,8</sup> & Ronald A. DePinho<sup>1</sup>

Nature 2023 Kdm5d (Ylinked)/ no role for 5c (X linked)

### Part | Sex differences in phenotype: sex chromosome content



- the inactive X as a « sınk » for chromatın factors

- factors that can influence the dosage of autosomal genes

Article

https://doi.org/10.1038/s41590-023-01463-8

# The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences

Received: 27 April 2022 Accepted: 14 February 2023 Published online: 36 March 2023 Mandy I. Cheng ©<sup>12</sup>, Joey H. Li<sup>12</sup>, Luke Riggan<sup>123</sup>, Bryan Chen ©<sup>1</sup>, Rana Yakhshi Tafti<sup>12</sup>, Scott Chin<sup>1</sup>, Felyang Ma ©<sup>24</sup>, Matteo Pellegrini<sup>24</sup>, Haley Hmcir<sup>3</sup>, Arthur P. Arnold<sup>5</sup>, Timothy E. O'Sullivan ©<sup>12</sup> & Maureen A. Su ©<sup>126</sup> - XCI escapees
 -parental imprints
 maternal X ≠ paternal X

-Y genes with no X homolog -transregulation between Xs

#### Article

# Histone demethylase KDM5D upregulation drives sex differences in colon cancer

| https://doi.org/10.1038/s41586- | 023-06254 |
|---------------------------------|-----------|
| Received: 18 October 2021       |           |
| Accepted: 24 May 2023           |           |
| Published online: 21 June 2023  |           |

Jiexi Li<sup>1</sup>, Zhengdao Lan<sup>1</sup>, Wenting Liao<sup>12</sup>, James W. Horner<sup>3</sup>, Xueping Xu<sup>3</sup>, Jielin Liu<sup>4</sup>, Yohei Yoshihama<sup>1</sup>, Shan Jiang<sup>3</sup>, Hong Seok Shim<sup>1</sup>, Max Slotnik<sup>1</sup>, Kyle A. LaBella<sup>1</sup>, Chang-Jiun Wu<sup>5</sup>, Kenneth Dunner Jr.<sup>1</sup>, Wen-Hao Hsu<sup>1</sup>, Rumi Lee<sup>1</sup>, Isha Khanduri<sup>6</sup>, Christopher Terranova<sup>6</sup>, Kadir Akdemir<sup>42</sup>, Deepavali Chakravarti<sup>1</sup>, Xiaoying Shang<sup>1</sup>, Denise J. Spring<sup>1</sup>, Y. Alan Wang<sup>18</sup> & Ronald A. DePinho<sup>152</sup>

Nature Immuno 2023 UTX (X linked) / no role for UTY (Y linked) Nature 2023 Kdm5d (Ylinked)/ no role for 5c (X linked)

#### Sex As a Biological Variable in animal research

- Evidences of sex impacting biology: an overview
- Specific illustrations in cancer and immunology
- Tools: How to apply Sex As a Biological Variable?

### Sex-bias in colorectal cancer

✤ iKAP (mouse) model:

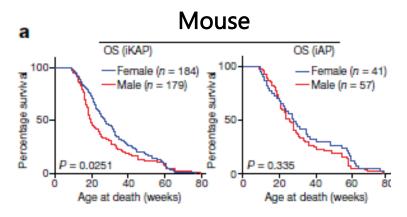
KRas<sup>G12D</sup> + conditional null alleles of *Apc* and *Trp53* (villin-CreERT2)

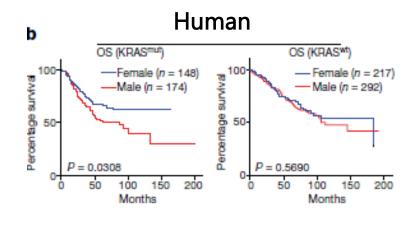
| Article                                |   |
|----------------------------------------|---|
| Histone demethylase KDM5D upregulatio  | n |
| drives sex differences in colon cancer |   |

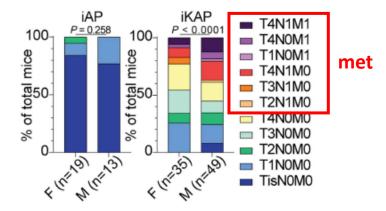
| https://doi.org/10.1038/s41586-023-06254-7 | Jiexi Li <sup>1</sup> , Zhengdao Lan <sup>1</sup> , Wenting Liao <sup>12</sup> , James W. Horner <sup>3</sup> , Xueping Xu <sup>3</sup> , Jielin Liu <sup>4</sup> ,                                                                                                                                                                                                                                         |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Received: 18 October 2021                  | Yohei Yoshihama', Shan Jiang', Hong Seok Shim', Max Slotnik', Kyle A. LaBella',<br>Chang-Jiun Wu <sup>a</sup> , Kenneth Dunner Jr.', Wen-Hao Hsu', Rumi Lee', Isha Khanduri <sup>6</sup> ,<br>Christopher Terranova <sup>6</sup> , Kadir Akdemi <sup>16,7</sup> , Deepavali Chakravarti <sup>1</sup> , Xiaoying Shang',<br>Denise J. Spring', Y. Alan Wang <sup>18</sup> & Ronald A. DePinho <sup>155</sup> |  |
| Accepted: 24 May 2023                      |                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Published online: 21 June 2023             |                                                                                                                                                                                                                                                                                                                                                                                                             |  |

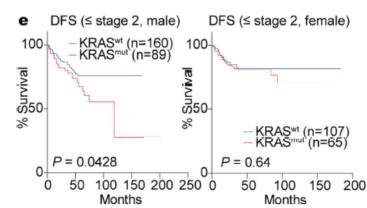


### Sex-bias in colorectal cancer


#### Article Histone demethylase KDM5D upregulation drives sex differences in colon cancer





Jiexi Li', Zhengdao Lan', Wenting Liao<sup>13</sup>, James W. Horner<sup>3</sup>, Xueping Xu<sup>2</sup>, Jielin Liu<sup>4</sup>, Yohei Yoshihama<sup>3</sup>, Shan Jiang<sup>3</sup>, Hong Seok Shim<sup>3</sup>, Max Slotnik<sup>1</sup>, Kyte A. LaBella<sup>1</sup>, Chang-Jiun Wu<sup>3</sup>, Kenneth Dunner Jr.<sup>1</sup>, Wen-Hao Hsu<sup>3</sup>, Rumi Lee<sup>1</sup>, Isha Khanduri<sup>6</sup>, Christopher Terranova<sup>6</sup>, Kadir Akdemin<sup>2</sup>, Deepavali Chakravarti<sup>1</sup>, Xlaoying Shang<sup>1</sup>, Denise J. Spring<sup>1</sup>, Y. Lan Wang<sup>16</sup> & Ronald A. DePinho<sup>15</sup> ✤ iKAP (mouse) model:


KRas<sup>G12D</sup> + conditional null alleles of Apc and Trp53 (villin-CreERT2)

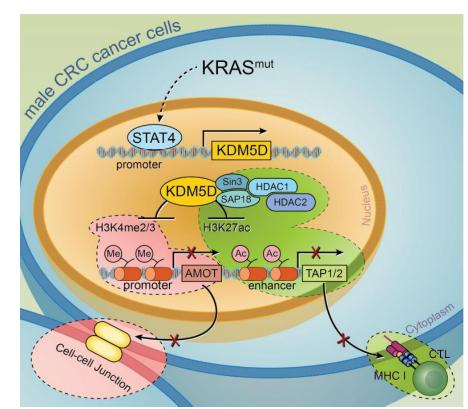
#### Sex differences tumor aggressiveness is related to KRAS\*












Nature 619, 632–639 (2023)

### Sex-bias in colorectal cancer

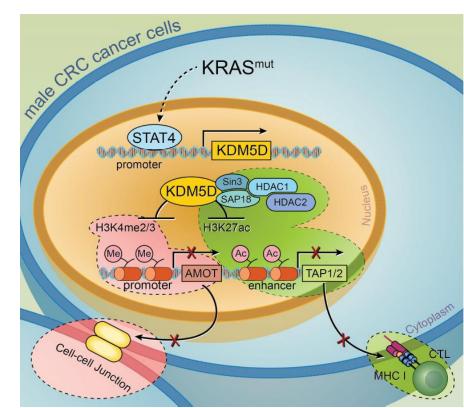
# > *KDM5D*: the sole Y-chromosome gene with differential expression

Primary vs metastatic iKAP tumours from males + KRAS\* on vs off

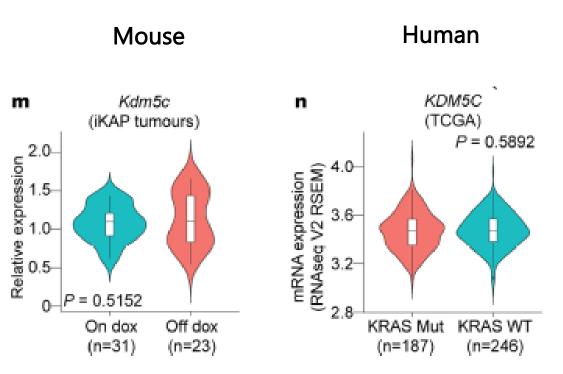


>  $\uparrow$  Dissemination and immune escape

Nature 619, 632–639 (2023)







## Sex-bias in colorectal cancer

# > *KDM5D*. the sole Y-chromosome gene with differential expression

Primary vs metastatic iKAP tumours from males + KRAS\* on vs off



KDM5C: the X-chromosome paralogue is not regulated

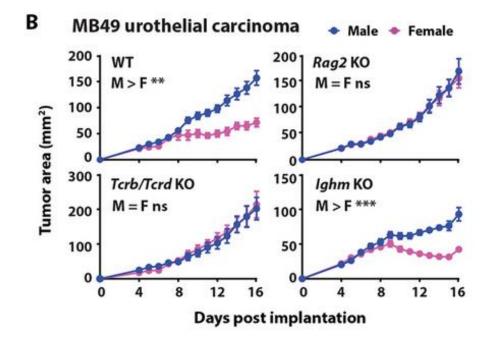


↑ Dissemination and immune escape

.

Nature 619, 632–639 (2023)

## Sex-bias in bladder cancer




SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

#### CANCER IMMUNOLOGY

Androgen conspires with the CD8<sup>+</sup> T cell exhaustion program and contributes to sex bias in cancer

MB49 cells: *in vitro* carcinogenesis of male mouse urothelial cells, with loss of Y

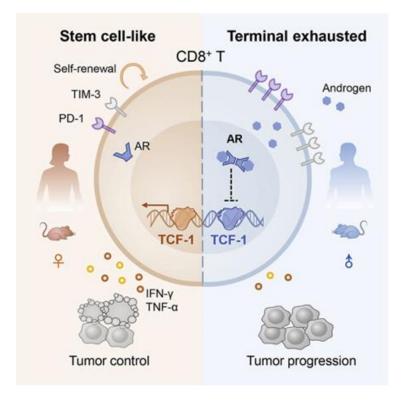


Lower tumor growth in females than in males

- Sexual dimorphism driven by:
  - endogenous antitumor T cell immunity (exhaustion)
  - T cell–intrinsic AR signaling

## Sex-bias in [bladder] cancer




### Immunity



Volume 55, Issue 7, 12 July 2022, Pages 1268-1283.e9

#### Article

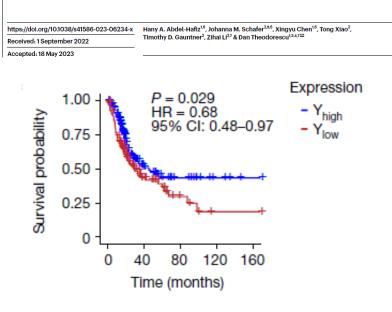
Androgen receptor-mediated CD8<sup>+</sup> T cell stemness programs drive sex differences in antitumor immunity



Immunity, Vol 55, Issue 7, 12 1268-1283.e9, 2022 Nature, 2022 Jun;606(7915):791-796. Clin & Trans Imm, Vol 11, Issue: 8, 2022

#### Article Androgen receptor activity in T cells limits checkpoint blockade efficacy

https://doi.org/101038/s41586-022-04522-6
Xiangnan Guan<sup>13 X31</sup>, Fanny Polesso<sup>132</sup>, Chaoje Wang<sup>18, 21</sup>, Archana Sehrawat<sup>3</sup>,
Received: 12 August 2020
Received: 12 August 2020
Received: 4 February 2022
Unlikedno dnine 23 March 2022
Unlikedno dnine 23 March 2022

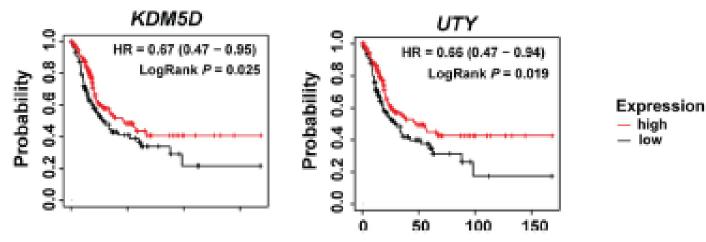

- High expression of AR in tumour infiltrating CD8+T
- AR deficiency (KO mice) increased the expansion, proliferation potential and anti-tumour functions of CD8<sup>+</sup> T cells and led to the expansion of stem-like TPEX cells
- Human CRC and skin cutaneous melanoma: Positive correlation between AR signalling genes and expression of exhaustion markers of CD8<sup>+</sup>TIL ; lower frequencies of T cells in males



# Part II But... Y chromosome could also be linked to antitumor role

Article

### Y chromosome loss in cancer drives growth by evasion of adaptive immunity





Patient data + vitro/vivo mouse data with MB49 cell sublines Y chromosome RNA expression signature score 300 men with locally advanced muscle-invasive bladder Cancer (TCGA)

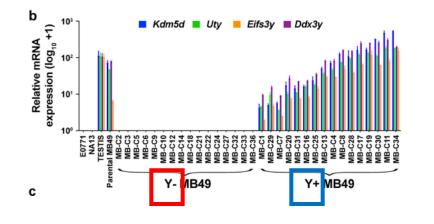
- LOY (Loss of Chromosome Y) associated with a worse patient outcome
- Involvement of KDM5D and UTY

high

low





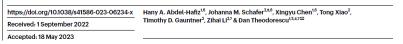

# Part II But... Y chromosome could also be linked to <u>antitumor</u> role

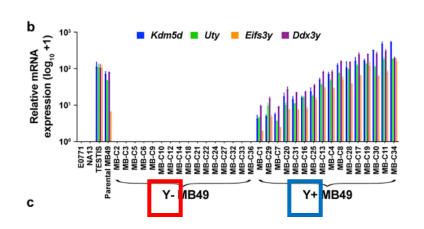
Article

### Y chromosome loss in cancer drives growth by evasion of adaptive immunity

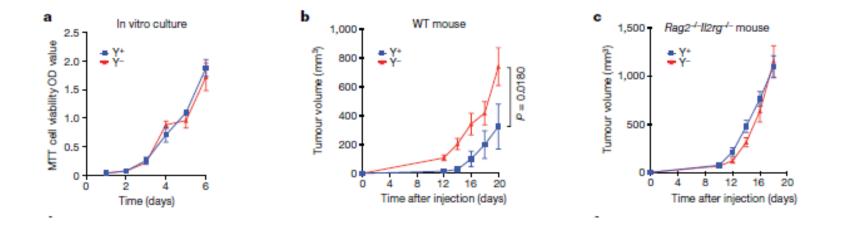
| https://doi.org/10.1038/s41586-023-06234-x | Hany A. Abdel-Hafiz <sup>1,6</sup> , Johanna M. Schafer <sup>2,5,6</sup> , Xingyu Chen <sup>1,6</sup> , Tong Xiao <sup>2</sup> , |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Received: 1 September 2022                 | Timothy D. Gauntner², Zihai Li²² & Dan Theodorescu <sup>13,4,7</sup>                                                             |  |
| Accepted: 18 May 2023                      |                                                                                                                                  |  |

Patient data + vitro/vivo mouse data with MB49 cell sublines




# Part II But... Y chromosome could also be linked to antitumor role


Article

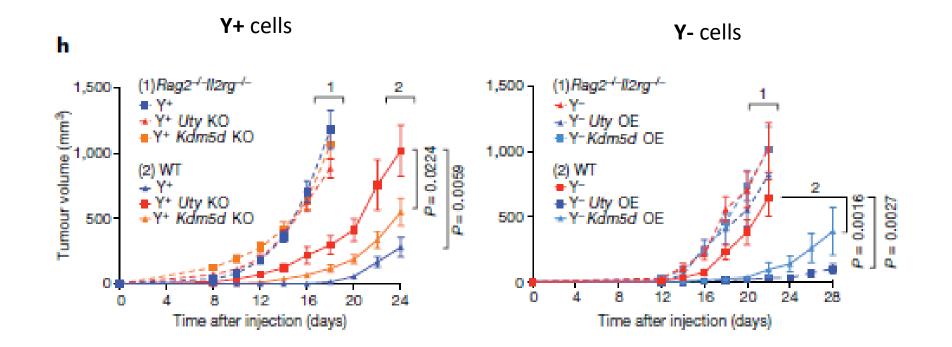
### Y chromosome loss in cancer drives growth by evasion of adaptive immunity





Patient data + vitro/vivo mouse data with MB49 cell sublines

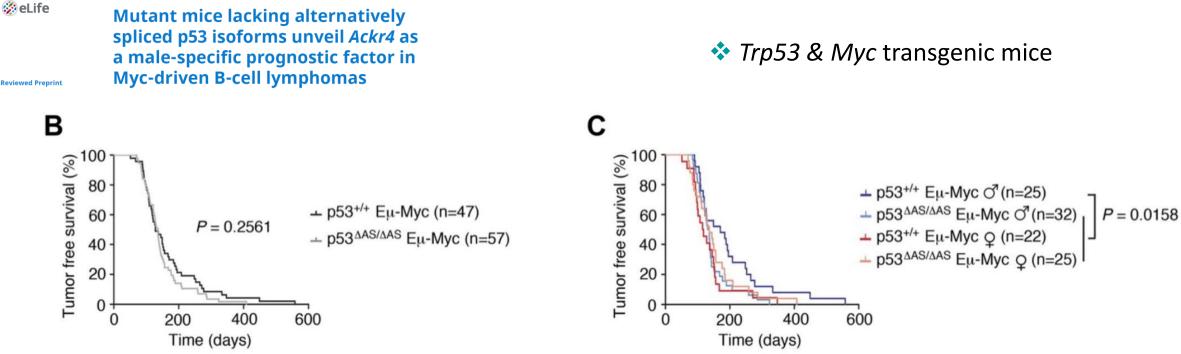



> No effect on *in vitro* growth between Y+/Y-

> Y- more aggressive in immunocompetent mice



Part II But... Y chromosome could also be linked to <u>antitumor</u> role


**Craft in immunodeficient (RagγC) or immunocompetent mice of:** 



> Molecular drivers lost in Y – tumours that contribute to immune evasion: UTY, KDM5D

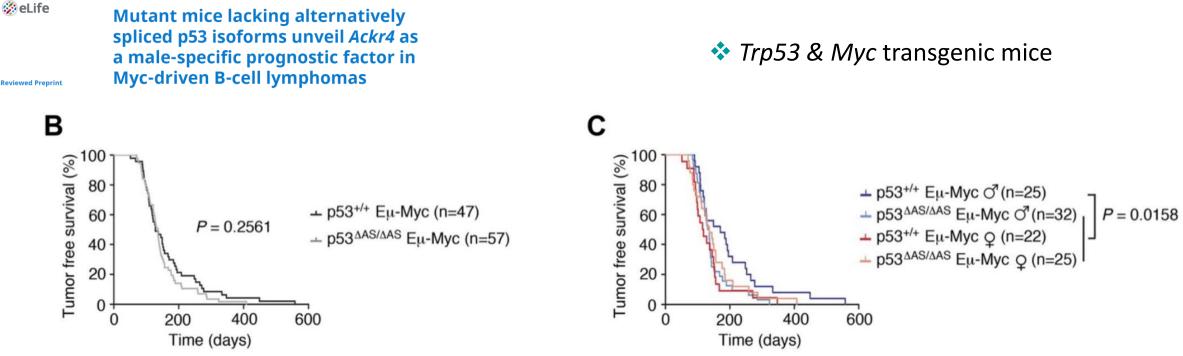
## Sex-bias in B-lymphomas





> Similar TFS curves for  $E\mu$ -Myc/Tp53wt vs  $\mu$ -Myc/Tp53<sup> $\Delta AS$ </sup>KO when sexes were not considered >  $E\mu$ -Myc/Tp53 wt less aggressive in males




2024 eLife. https://doi.org/10.7554/eLife.92774.1

Part II

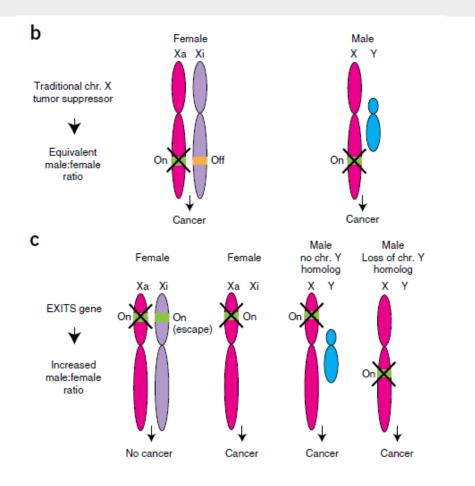
Cancer Biology

## Sex-bias in B-lymphomas





> Similar TFS curves for  $E\mu$ -Myc/Tp53wtvs  $\mu$ -Myc/Tp53<sup> $\Delta AS$ </sup>KO when sexes were not considered


- > *Eµ-Myc/Tp53 wt* less aggressive in males
- Role of Ackr4 in tumor aggressiveness in females than in males

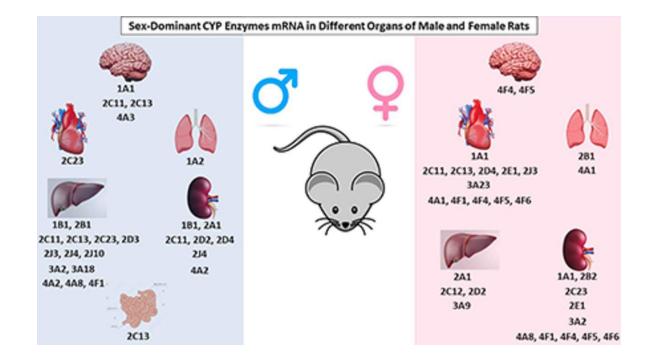


Part II

Cancer Biolog

### Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias




Putative X-linked tumor suppressor genes in human cancers

| FOXP3   | Xp11.23   | Mouse, Rat, Dog                         |
|---------|-----------|-----------------------------------------|
| RBBP7   | Xp22.2    | Mouse, Rat, Dog                         |
| CD99    | Xp22.32 a | and Yp11.3 Dog, (but not in Mouse, Rat) |
| FAM123B | Xq11.1    | Mouse, Rat, Dog                         |
| EDA2R   | Xq12      | Mouse, Rat, but unknow in Dog           |
| RPS6KA6 | Xq21      | Mouse, Rat, Dog                         |
| ATRX    | Xq21.1    | Mouse, Rat, Dog                         |
| ELF4    | Xq26.1    | Mouse, Rat, Dog                         |
| PHF6    | Xq26.3    | Mouse, Dog, but unknow in Rat           |
| LDOC1   | Xq27      | Mouse, Rat, Dog                         |
| RPL10   | Xq28      | Mouse, Rat, Dog                         |
| DKC1    | Xq28      | Mouse, Rat, Dog                         |

Biallelic expression of 'Escape from X-inactivation tumor-suppressor' (EXITS) genes in females: reduced cancer incidence in females vs males

## That's not all:

Efficacy assays: Sexual dimorphism in the expression and/or activity levels of P450 enzymes in different organs





## Genes on the X with the potential to influence immunocompetence

IGBP1

IGSFI

CD99

MTCP1

PFC

TIMP1

CD40L

Z39IG

ITGB1BP2

B Descriptions 0 according to the description

#### SCIENCE & SOCIETY

The X-files in immunity: sex-based differences predispose immune responses

Eleanor N. Fish

#### nature immunology

Article

https://doi.org/10.1038/s41590-023-01463-8

## The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences

Received: 27 April 2022

Accepted: 14 February 2023

Published online: 16 March 2023

Mandy I. Cheng ©<sup>12</sup>, Joey H. Li<sup>12</sup>, Luke Riggan<sup>12,3</sup>, Bryan Chen ©<sup>1</sup>, Rana Yakhshi Tafti<sup>12</sup>, Scott Chin<sup>1</sup>, Feiyang Ma ©<sup>3,4</sup>, Matteo Pellegrini<sup>3,4</sup>, Haley Hrncir<sup>5</sup>, Arthur P. Arnold<sup>5</sup>, Timothy E. O'Sullivan ©<sup>12</sup>⊠ & Maureen A. Su ©<sup>12,6</sup>⊠

RESEARCH ARTICLE

The Journal of Clinical Investigation

## The X-linked histone demethylase *Kdm6a* in CD4<sup>+</sup> T lymphocytes modulates autoimmunity

Yuichiro Itoh,<sup>1</sup> Lisa C. Golden,<sup>1,2</sup> Noriko Itoh,<sup>1</sup> Macy Akiyo Matsukawa,<sup>1</sup> Emily Ren,<sup>1</sup> Vincent Tse,<sup>1</sup> Arthur P. Arnold,<sup>3</sup> and Rhonda R. Voskuhl<sup>1</sup>

<sup>1</sup>Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.<sup>2</sup>Molecular Biology Institute, UCLA, Los Angeles, California, USA.<sup>3</sup>Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA.

| a Receptors & associated proteins |                                                                                       |  |
|-----------------------------------|---------------------------------------------------------------------------------------|--|
| AR                                | Androgen receptor                                                                     |  |
| AGTR2                             | Angiotensin receptor 2                                                                |  |
| CSF2RA                            | Colony-stimulating factor 2 receptor $\alpha$ (granulocyte-macrophage)                |  |
| GPCR                              | G-protein coupled receptors 23, 50, 101, 112, 119, 174<br>and CX-chemokine receptor 3 |  |
| CYSLTR1                           | Cysteinyl leukotriene receptor 1                                                      |  |
| IL-1RAP1                          | Interleukin-1 (IL-1) receptor accessory protein-like 1                                |  |
| IL-1RAP2                          | IL-1 receptor accessory protein-like 2                                                |  |
| IL-2RG                            | IL-2 receptor γ-chain                                                                 |  |
| IL-3RA                            | IL-3 receptor α-chain                                                                 |  |
| IL-9R                             | IL-9 receptor                                                                         |  |
| IL-13RA1                          | IL-13 receptor α1-chain                                                               |  |
| IL-13RA2                          | IL-13 receptor α2-chain                                                               |  |
| IRAK                              | IL-1 receptor-associated kinase                                                       |  |
| NGFRAP1                           | Nerve-growth-factor receptor associated protein 1                                     |  |
| TLR7                              | Toll-like receptor 7                                                                  |  |
| TLR8                              | Toll-like receptor 8                                                                  |  |
| o Immune-re                       | esponse related proteins                                                              |  |
| XSCID                             | X-linked severe combined immunodeficiency                                             |  |
| ELK1                              | Involved in B-cell development                                                        |  |
| EPAG                              | Early lymphoid activation protein                                                     |  |
| GATA1                             | GATA-binding protein 1                                                                |  |
| GTD                               | Gonadotropin deficiency                                                               |  |
| IDDMX                             | X-linked susceptibility to insulin-dependent diabetes                                 |  |
| LCDD1                             | CD704 receive a debute breaks a sector 1                                              |  |

CD79A, immunoglobulin binding protein 1

Also known as MIC2; associated with T-cell function

Immunoglobulin superfamily member 1

Tissue inhibitor of metalloproteinase 1

An immunoglobulin superfamily protein

Integrin-β,-binding protein 2

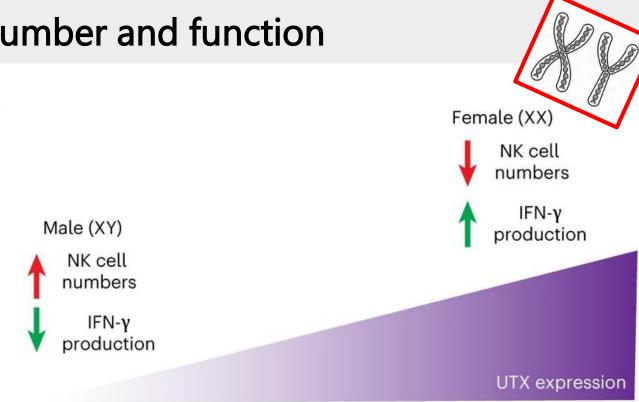
Mature T-cell proliferation 1 Properdin P factor, complement

CD40 ligand

#### c Transcriptional & translational control effectors

| e manscriptiona | a translational control effectors                                                       |
|-----------------|-----------------------------------------------------------------------------------------|
| RHOGAP          | RAS homologue (RHO) GTPase activating proteins 4, 6                                     |
| CDC42GEF        | Cell-division cycle 42 guanine-nucleotide-exchange factors 6, 9                         |
| ETK             | Also known as BMX                                                                       |
| BTK             | Bruton agammaglobulinaemia tyrosine kinase                                              |
| CDX4            | Caudal homeobox transcription factor 4                                                  |
| TRAP170         | A co-factor for SP1 transcription factor activation                                     |
| DUSP            | Dual specificity phosphatases 9, 21                                                     |
| EEF             | Eukaryotic translation elongation factors 1α13, β4                                      |
| EIF             | Eukaryotic translation initiation factor 1A*, 2a                                        |
| FOXP3           | Forkhead box P3 (associated with the development and<br>function of regulatory T cells) |
| GAB3            | Growth-factor-receptor-bound protein 2-associated binding protein 3                     |
| HDAC            | Histone deacetylases 6, 8                                                               |
| ΙΚΚγ            | IκB kinase; also known as NEMO                                                          |
| MAPKKK15        | Mitogen-activated protein kinase kinase kinase 15                                       |
| NFKBRF          | Nuclear factor-κB (NF-κB) repressing factor                                             |
| NRK             | NF-κB-inducing kinase-related kinase                                                    |
| NXF             | Nuclear RNA export factors 2, 3, 4, 5                                                   |
| PAK3            | p21 (also known as CDKN1A)-activated kinase 3                                           |
| PPP             | Protein phosphatases 1, 2*, 6                                                           |
| PRKCI           | Protein kinase Ci                                                                       |
| S6K             | Ribosomal protein S6 kinase                                                             |
| SWI/SNF         | SWI/SNF-related, matrix associated, actin-dependent regulator<br>of chromatin           |
| STK9            | Serine/threonine kinase 9                                                               |
| TAFI            | TATA-box-binding protein-associated factor 1, TFIID subunit                             |
| UBEI            | Ubiquitin-activating enzyme El                                                          |
| UBE2A           | Ubiquitin-conjugating enzyme E2A                                                        |
| USP             | Ubiquitin-specific proteases 9*, 11, 26, 27, 511                                        |
| WASP            | Wiskott–Aldrich syndrome protein                                                        |
|                 |                                                                                         |

## Sex-bias in NK number and function




#### nttps://doi.org/10.1038/s41590-023-01463-8 The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences

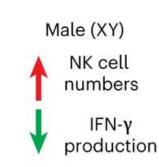
| Received: 27 April 2022         |  |
|---------------------------------|--|
| Accepted: 14 February 2023      |  |
| Published online: 16 March 2023 |  |

Mandy I. Cheng <sup>12</sup>, Joey H. Li<sup>12</sup>, Luke Riggan<sup>12,3</sup>, Bryan Chen <sup>1</sup> Rana Yakhshi Tafti<sup>1,2</sup>, Scott Chin<sup>1</sup>, Feiyang Ma <sup>3,4</sup>, Matteo Pellegrini<sup>3,4</sup>, Haley Hrncir<sup>5</sup>, Arthur P. Arnold<sup>5</sup>, Timothy E. O'Sullivan <sup>12</sup> & Maureen A. Su @ 1.2.6

- $\succ$  Sex differences in NK cell numbers and IFN- $\gamma$ production are independent of gonadal
- > X-linked UTX displays sexually dimorphic gene expression independent of sex hormones.

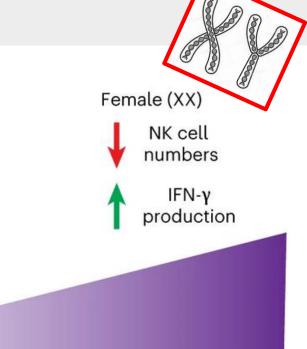




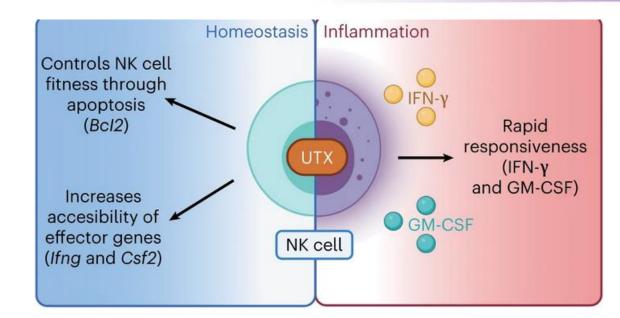

## Sex-bias in NK number and function



#### ttps://doi.org/10.1038/s41590-023-01463-8 The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences


| Received: 27 April 2022         |  |
|---------------------------------|--|
| Accepted: 14 February 2023      |  |
| Published online: 16 March 2023 |  |

Mandy I. Cheng 12, Joey H. Li<sup>1,2</sup>, Luke Riggan<sup>1,2,3</sup>, Bryan Chen 1, Rana Yakhshi Tafti<sup>1,2</sup>, Scott Chin<sup>1</sup>, Feiyang Ma <sup>3,4</sup>, Matteo Pellegrini<sup>3,4</sup>, Haley Hrncir<sup>5</sup>, Arthur P. Arnold<sup>5</sup>, Timothy E. O'Sullivan <sup>012</sup> & Maureen A. Su @ 1.2.6




 $\succ$  Sex differences in NK cell numbers and IFN- $\gamma$ production are independent of gonadal

> X-linked UTX displays sexually dimorphic gene expression independent of sex hormones.



UTX expression





## Sex As a Biological Variable in animal research

- Evidences of sex impacting biology: an overview
- Specific illustrations in cancer and immunology
- Tools: How to apply Sex As a Biological Variable?

# Part III How to apply Sex As a Biological Variable?

Pubmed: systematically check 'sex' 'male and female' 'sex bias' 'X or Y chromosome' to your literature search

Pubmed your candidate gene (X and Y linked genes?)

Funding & International guidelines

Biostatistics

Courses

[ Four core genotype (FCG) mouse model ]

# Part III How to apply Sex As a Biological Variable?

Pubmed: systematically check 'sex' 'male and female' 'sex bias' 'X or Y chromosome' to your literature search

Pubmed your candidate gene (X and Y linked genes?)

- Funding & International guidelines
- Biostatistics
- Courses
- [ Four core genotype (FCG) mouse model]

All steps are concerned





Design studies that take sex into account, or explain why it isn't incorporated



Collect

Tabulate sex-based data



Characterize

Analvze

sex-based data



Communicate

Report and publish sex-based data

## **International guidelines & Funding**





When can experiments be done in only one sex?

- When studying a sex-specific phenomenon, such as ovarian cancer or prostate cancer.
- To address inadequate published data for one sex in a particular area.
- Where there is statistically robust evidence that sex does not influence a trait or outcome.

In diseases where one sex predominates, such as breast cancer, both sexes may still need to be included, but researchers may choose not



European Commission

> GENDERED INNOVATIONS 2: How Inclusive Analysis Contributes to Research and Innovation

Policy Review

Research and Innovation

Nature. 2014;509(7500):282-3.

REVIEW

Heidari et al. Research Integrity and Peer Review (2016) 1:2 DOI 10.1186/s41073-016-0007-6

## **SAGER** Guidelines

Research Integrity and Peer Review

### **Open Access**



### Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use

Shirin Heidari<sup>1</sup>, Thomas F. Babor<sup>2\*</sup>, Paola De Castro<sup>3</sup>, Sera Tort<sup>4</sup> and Mirjam Curno<sup>5</sup>

nature > editorials > article

EDITORIAL | 18 May 2022

### Nature journals raise the bar on sex and gender reporting in research

Authors will be prompted to provide details on how sex and gender were considered in study design.

### Instructions for authors

- ✓ Cell
- ✓ Nature
- ✓ Springer

#### Deringer

Subjects Services 
About Us

# Sex and Gender in Research (SAGER Guidelines)

We encourage our authors to follow the <u>'Sex and Gender Equity in Research – SAGER –</u> <u>guidelines'</u> and to include sex and gender considerations where relevant. Authors should use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid confusing both terms. Article titles and/ or abstracts should indicate clearly what sex(es) the study applies to. Authors should also describe in the background, whether sex and/or gender differences may be expected; report how sex and/or gender were accounted for in the design of the study; provide disaggregated data by sex and/or gender, where appropriate; and discuss respective results. If a sex and/or gender analysis was not conducted, the rationale should be given in the Discussion. We suggest that our authors consult the full <u>guidelines</u> before submission.

## SAGER Guidelines: Checklist

|             |    |                                                                                                                                                                                                           | -          |
|-------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| General     |    |                                                                                                                                                                                                           |            |
|             | 1  | The terms sex/gender used appropriately                                                                                                                                                                   |            |
| Title       |    |                                                                                                                                                                                                           |            |
|             | 2a | Title specifies the sex of animals or any cells, tissues, and other material derived from these                                                                                                           | T L<br>I r |
|             | 2b | In applied sciences (technology, engineering, etc.), the title<br>indicates if the study model was based on one sex/gender or the<br>application was considered for the use of one specific sex/gender    |            |
| Abstract    |    |                                                                                                                                                                                                           |            |
|             | 3a | Abstract specifies sex of animals or any cells, tissues, and other material derived from these                                                                                                            |            |
|             | 3b | In applied sciences (technology, engineering, etc.), the abstract<br>indicates if the study model was based on one sex/gender or the<br>application was considered for the use of one specific sex/gender |            |
| Introductio | on |                                                                                                                                                                                                           |            |
|             | 4a | If relevant, previous studies that show presence or lack of sex or<br>gender differences or similarities are cited                                                                                        |            |
|             | 4b | Mention of whether sex/gender might be an important variant<br>and if differences might be expected                                                                                                       |            |

| Methods |    |                                                                                                                                                                                                                |
|---------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5a      |    | In cell biological, molecular biological, or biochemical<br>experiments, the origin and sex chromosome constitutions of<br>cells or tissue cultures are stated. If unknown, the reasons are<br>stated          |
|         | 5b | For studies testing devices or technology, explanation of whether<br>the product will be applied or used by all genders and if it has<br>been tested with a user's gender in mind                              |
|         | 5с | If relevant, description of how sex/gender was considered in the design                                                                                                                                        |
|         | 5d | For in-vivo and in-vitro studies using primary cultures of cells, or<br>cell lines from humans or animals, or ex-vivo studies with tissues<br>from humans or animals, the sex of the subjects or source donors |

is stated (except for immortalized cell lines, which are highly transformed)

| Results                                                                                        |   |                                                                  |
|------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------|
|                                                                                                | 6 | For studies using animal models, present a sex breakdown of the  |
|                                                                                                | 0 | animals*                                                         |
| Discussior                                                                                     | ı |                                                                  |
|                                                                                                |   | If relevant, potential implications of sex/gender on the study   |
|                                                                                                | 7 | results and analyses, including the extent to which the findings |
|                                                                                                |   | can be generalized to all sexes/genders in a population          |
| Adapted from SAGER guidelines. Sex and gender equity in research: rationale for the SAGER      |   |                                                                  |
| guidelines and recommended use. Research Integrity and Peer Review 1, Article number: 2 (2016) |   |                                                                  |
| 1                                                                                              |   |                                                                  |

https://researchintegrityjournal.biomedcentral.com/articles/10.1186/s41073-016-0007-6. \*These points extend beyond the original SAGER table.

# Part III How to apply Sex As a Biological Variable?

Pubmed: systematically check 'sex' 'male and female' 'sex bias' 'X or Y chromosome' to your literature search

Pubmed your candidate gene (X and Y linked genes?)

Funding & International guidelines

Biostatistics

Courses

[ Four core genotype (FCG) mouse model]

## **Biostatistics**

|             | Basic                                                                                                        | Updated                                                                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Replacement | Avoiding or replacing<br>the use of animals in<br>areas where they<br>otherwise would have<br>been used.     | Accelerating the development and<br>use of predictive and robust models<br>and tools, based on the latest<br>science and technologies, to<br>address important scientific<br>questions without the use of<br>animals. |
| Reduction   | Minimising the<br>number of animals<br>used consistent with<br>scientific aims.                              | Appropriately designed and<br>analysed animal experiments that<br>are robust and reproducible, and<br>truly add to the knowledge base.                                                                                |
| Refinement  | Minimising the pain,<br>suffering, distress or<br>lasting harm that<br>research animals<br>might experience. | Advancing research animal welfare<br>by exploiting the latest <i>in vivo</i><br>technologies and by improving<br>understanding of the impact of<br>welfare on scientific outcomes.                                    |

- Absence of evidence regarding sex differences is not justification
- > Female variability is not sufficient justification
- Sex differences must be considered before they can be ruled out

NC 3R<sup>s</sup>

## **Biostatistics: blocking experiments**

### Impact on animal numbers

https://eda.nc3rs.org.uk/experimental-design-animal-characteristics

- Males and females should be randomised separately to the experimental groups
- The sample size and the analysis method both depend on the purpose of the experiment:

#### Using sex as a blocking factor

Sex: \*could influence \*should not influence

- To determine the overall effect of an intervention
- Allows the variability introduced by sex to be taken into account
- Requires same number of animals as a single sex experiment

#### Using sex as a factor of interest

- To investigate whether the effect of the intervention depends on sex
- Requires increased number of animals compared to a single sex experiment



# Part III How to apply Sex As a Biological Variable?

Pubmed: systematically check 'sex' 'male and female' 'sex bias' 'X or Y chromosome' to your literature search

Pubmed your candidate gene (X and Y linked genes?)

Funding & International guidelines

- Biostatistics
- Courses

[ Four core genotype (FCG) mouse model ]

COLLÈGE **DE FRANCE** Enseignements Recherche Bibliothèa 

# **Pr Edith Heard**

Cours

Biais liés au sexe dans la susceptibilité aux maladies : causes génétiques et épigénétiques

Cours

Le lundi, de 10 hà 12 h30 — Amphithéâtre Maurice Halbwachs

#### 6 mars 2023

Introduction : les maladies ont-elles un sexe ?

#### 13 mars 2023

Biais liés au sexe : comment distinguer les effets dus aux chromosomes sexuels, hormones ou mode de vie?

#### 20 mars 2023

L'impact de l'expression des gènes liés aux chromosomes X inactif et Y sur les différences entre les sexes

#### 27 mars 2023

L'importance de la régulation du dosage des gènes sur le chromosome X dans la susceptibilité à certaines maladies



### Courses



#### Putting science to work for the health of women

| OUR WORK          | RESOURCES & TRAINING | SEX & GENDER | WOMEN'S HEALTH EQUITY & INCLUSION |
|-------------------|----------------------|--------------|-----------------------------------|
| HOME > E-LEARNING |                      |              |                                   |
| E-Learning        |                      |              |                                   |
| L Lourning        |                      |              |                                   |
|                   |                      |              |                                   |

OF

ORWH e-learning courses give users a thorough and up-to-date understanding of sex and gender influences on health and disease and NIH requirements on factoring sex as a biological variable into research designs. Users will be able to apply this knowledge when designing and conducting research or interpreting evidence for clinical practice. Offerings include Bench to Bedside: Integrating Sex and Gender to Improve Human Health (CME credits available), Sex as a Biological Variable: A Primer, Introduction: Sex- and Gender-Related Differences in Health, the SABV Primer: Train the Trainer, and Introduction to Sex and Gender: Core Concepts for Health-Related Research.

E-Learning Courses Flyer E-Learning Course Guide

The courses are open to the public, and registration is free.

Bench to Bedside: Integrating Sex and Gender to Improve Human Health

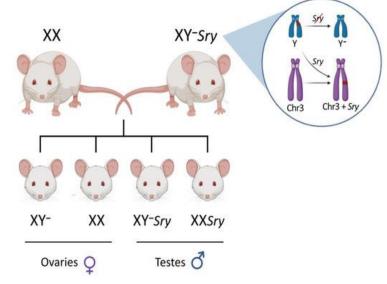
Ø Sex as a Biological Variable (SABV): A Primer

25 **SABV Primer: Train the Trainer** 

Introduction to Sex and Gender: Core Concepts for Health-Related **F**+**F** EL-Ò Research

# Part III How to apply Sex As a Biological Variable?

Pubmed: systematically check 'sex' 'male and female' 'sex bias' 'X or Y chromosome' to your literature search


Pubmed your candidate gene (X and Y linked genes?)

Funding & International guidelines

Biostatistics

Courses

Four core genotype (FCG) mouse model : hormon vs chromosome ]



## Perspectives

> Of course 'sex' is not the only one variable to be taken into account:

Age, genetic background (stain and backcross), Experimental unit...(ARRIVE guidelines)

> Not only *in vivo* but **cells** too!

#### REVIEW

Did you forget your cell sex? An update on the inclusion of sex as a variable in *AJP-Cell Physiology* 

Anthony Holland and © Neil A. Bradbury Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, United States

 $\succ$  Other topics, other species (mammals, birds, reptiles)

#### **RESEARCH ARTICLE**

#### IMMUNOLOGY

Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis

Sex-biased gene expression across mammalian organ development and evolution

ticia rodríguez.Montes 🍈 . Svetlana ovchinnikova 🧿 . Xuefe vlar 🌍 . Tania studer. Ioannis Sarropoulos 🎒 . Simon anders 🌍 Enrik Kaessmann 💿 , and Margarida Cardoso-Moreira 🌍 . **Authors Info & Affiliations** 

SCIENCE · 3 Nov 2023 · Vol 382, Issue 6670 · DOI: 10.1126/science.adf1046

#### nature communications

Article

https://doi.org/10.1038/s41467-024-46384-8

6

#### Epigenetic modulators link mitochondrial redox homeostasis to cardiac function in a sex-dependent manner

| Received: 3 August 2022    | Zaher ElBeck @ 1.2, Mohammad Bakhtiar Hossain @ 3, Humam Siga                                                                                                                                                |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Accepted: 23 February 2024 | Nikolay Oskolkov © <sup>4</sup> , Fredrik Karlsson <sup>5</sup> , Julia Lindgren © <sup>6</sup> ,<br>Anna Walentinsson © <sup>7</sup> , Dominique Koppenhöfer © <sup>1</sup> , Rebecca Jarvis © <sup>8</sup> |  |

# Thank you



Athanassia Sotiropoulos

Susana Gomez